Inhibition of the A-type K+ channels of dorsal root ganglion neurons by the long-duration anesthetic butamben.
نویسندگان
چکیده
n-Butyl-p-aminobenzoate (BAB; butamben) is a long-duration anesthetic used for the treatment of chronic pain. Epidural administration of BAB is thought to reduce the electrical excitability of dorsal root nociceptor fibers by inhibiting voltage-gated ion channels. To further investigate this mechanism, we examined the effects of BAB on the potassium currents of acutely dissociated neurons from the rat dorsal root ganglion (DRG). These neurons express a rapidly inactivating A-type K(+) current (I(A)) that is resistant to tetraethylammonium (20 mM) but inhibited by 4-aminopyridine (5 mM). At low concentrations, BAB (< or =1 microM) selectively inhibited the I(A) component of DRG K(+) current. The voltage dependence of activation and inactivation, kinetics of recovery from inactivation, and the pharmacology of the DRG I(A) were similar to those of the Kv4 family of K(+) channels. Reverse transcription-polymerase chain reaction was used to establish that the messages encoding for all three of the mammalian Kv4 channel subunits (Kv4.1-Kv4.3) were present in the rat DRG. BAB produced a high-affinity, partial inhibition of heterologously expressed Kv4.2 channels (K(D) = 59 nM) but did not alter the kinetics or voltage sensitivity of gating. Substituting polar threonines for conserved hydrophobic residues of the S6 segment weakened BAB binding but did not alter the voltage-dependent gating of the Kv4.2 channel. At physiological pH, BAB is uncharged, suggesting that hydrophobic interactions may contribute to drug binding. The data support a mechanism in which BAB binds near the narrow cytoplasmic entrance of Kv4 channels and inhibits current by a pore blocking mechanism.
منابع مشابه
The local anesthetic butamben inhibits and accelerates low-voltage activated T-type currents in small sensory neurons.
Butamben (BAB) is a local anesthetic that can be used in epidural suspensions for long-term selective suppression of dorsal root pain signal transmission and in ointments for the treatment of skin pain. Previously, high-voltage activated N-type calcium channel inhibition has been implicated in the analgesic effect of BAB. In the present study we show that low-voltage activated or T-type calcium...
متن کاملKv1.1 channels of dorsal root ganglion neurons are inhibited by n-butyl-p-aminobenzoate, a promising anesthetic for the treatment of chronic pain.
In this study, we investigated the effects of the local anesthetic n-butyl-p-aminobenzoate (BAB) on the delayed rectifier potassium current of cultured dorsal root ganglion (DRG) neurons using the patch-clamp technique. The majority of the K(+) current of small DRG neurons rapidly activates and slowly inactivates at depolarized voltages. BAB inhibited the whole-cell K(+) current of these neuron...
متن کاملThe Neuroprotective Effect of Nepeta menthoides on Axotomized Dorsal Root Ganglion Sensory Neurons in Neonate Rats
Background and Objective: Sensory neurons have critical role in improvement of functional outcome of any neuroprotective strategy. The herbal medicine Nepeta menthoides has been reported to have anti-apoptotic effect on axotomized spinal motoneurons. In the present study, the putative neuroprotective effect of Nepeta menthoides on the axotomized dorsal root ganglion sensory neurons in neonate r...
متن کاملMorphological Identification of Cell Death in Dorsal Root Ganglion Neurons Following Peripheral Nerve injury and repair in adult rat
Background: Axotomy causes sensory neuronal loss. Reconnection of proximal and distal nerve ends by surgical repair improves neuronal survival. It is important to know the morphology of primary sensory neurons after the surgical repair of their peripheral processes. Methods: Animals (male Wistar rats) were exposed to models of sciatic nerve transection, direct epineurial suture repair of sciati...
متن کاملThe Effect of Swimming Training on Ganglionic Cells Population and Class III Beta-Tubulin Protein in Dorsal Root Ganglion of Wistar Male Rats: An Experimental Study
Background and Objectives: β-tubulin protein is the protein that has a key role in plasticity and neurogenesis in the mature neurons. On the other hand, endurance training is effective in neuron life and lifespan. The present study aimed to investigate the effect of 20 days swimming training on class III β-tubulin and the number of ganglion cells in DRG of Wistar male rats. Materials and Me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 314 3 شماره
صفحات -
تاریخ انتشار 2005